Монолитные каркасы проектируют рамными или рамно-связевыми (с устройством монолитных диафрагм жесткости).

В зависимости от решения ригелей (балок) монолитные каркасно-ригельные системы могут быть двух типов: с главными и второстепенными балками в разных направлениях; с балками одинакового значения в двух или трех направлениях (с перекрытиями кессонного типа).

В первом типе каркаса второстепенные балки опираются на монолитно связанные с ними главные балки, а те, в свою очередь, - на колонны (см. рис. 5.3).Компоновка второстепенных и главных балок в плане может быть различной (при продольном или поперечном их расположении). При выборе направления главных балок учитывают назначение здания, пространственную жесткость каркаса и др. требования.

Пролеты главных балок 6-9 (12) м, высота поперечного сечения 1/8-1/15 от пролета, а ширина - 0,4-0,5 высоты.

В каждом пролете главной балки располагают от одной до трех второстепенных балок. По осям колонн также располагают второстепенные балки. Их пролеты - 5-7 м, высота поперечного сечения - 1/12-1/20 от пролета, ширина - 0,4-0,5 от высоты.

Пролеты монолитной плиты перекрытия равны шагу второстепенных балок и составляют 2-3 м, а толщина плиты, в зависимости от нагрузки, выбирается в пределах 1/25-1/40 пролета и чаще всего составляет 80-100 мм.

Фрагменты разрезов

Рис. 5.3. 1 - колонна; 2 - главная балка; 3 - второстепенная балка; 4 - монолитная плита перекрытия

Каркасы с частым расположением балок (1-2 м) в двух или трех направлениях с одинаковым шагом и высотой называют каркасами с кессонными перекрытиями (см. рис. 5.4).Их преимущества заключаются в сравнительно меньшей высоте перекрытия (балок) и высокой архитектурной выразительности потолков общественных зданий

Рис. 5.4. Монолитные железобетонные каркасы с перекрытиями кессонного типа: а - конструктивно-планировочные ячейки; б - фрагмент разреза

К числу перспективных можно отнести суперкаркасную систему этажерочного типа (рис. 5.5),при которой пространственная жесткость здания обеспечивается так называемым суперкаркасом, представляющим собой несколько коробчатых пилонов (стволов), соединенных между собой мощными ростверками в нескольких уровнях по высоте здания. На ростверки (как на полки этажерки) опираются многоэтажные каркасы, которые могут иметь различные планировочные и конструктивные решения. Каркасы этажерочного типа являются наиболее пер­спективными для зданий очень большой этажности (сверхвысотных).

Рис. 5.5. Конструктивная схема каркаса этажерочного типа: а - схема фасада; б - схема типового этажа; в - схема ростверка; 1 - коробчатый пилон; 2 - ростверк; 3 - каркасно-ригельная структура

Безригельные каркасы

Безригельный каркас - конструктивная система с плоскими перекрытиями, опирающимися непосредствен­но на колонны без вспомогательных балок-ригелей.

Безригельные каркасы в архитектурном отношении имеют значительные преимущества:

Плоские перекрытия имеют общую высоту в 2-3 раза меньшую, чем перекрытия в каркасно-ригельных системах;

Перекрытия с гладкими потолками способствуют применению свободной планировки и трансформации помещений путем устройства мобильных перегородок, не связанных жестко с перекрытиями;

Консольные участки перекрытий по периметру позволяют выполнять более сложные конфигурации фа­садных плоскостей, устраивать лоджии, террасы, веран­ды без дополнительных конструктивных элементов;

Наличие гладкого потолка позволяет отказаться от дорогостоящих подвесных потолков.

Безригельные каркасы имеют и технико-экономические преимущества: упрощается монтаж опалубки благодаря отсутствию ригелей (при монолитном способе производства), уменьшается площадь последующей обработки потолка и упрощаются отделка, прокладка под потолком трубопроводов, устройство теплоизоляции и т.д.

Наряду с отмеченными преимуществами безригельные системы имеют недостатки, препятствующие массовому их распространению в практике строительства: величины пролетов безбалочных перекрытий более ограничены, чем в традиционных ригельных системах; не во всех случаях изготовление плоских перекрытий дешевле и проще ригельных; усложнены расчет и оценка действи­тельной работы конструкций перекрытий.

Однако эти недостатки, в основном конструктивного характера, при дальнейшем совершенствовании систем могут быть устранены. Архитектурные качества безригельных систем все больше привлекают внимание архитекторов и конструкторов. Многочисленные поиски специалистов разных стран привели к различным конструктивным решениям. Многие варианты безригельного каркаса прошли экспериментальную проверку и вошли в строительную практику.

Несколько предложений по безригельным конструкциям разработаны в Украине. Среди них - грибовидный каркас, примененный в проектах различных типов общественных зданий (рис. 12.79).

Грибовидный каркас вписывается в структурную сетку на основе равностороннего треугольника со стороной 3,2 м и состоит из двух основных элементов: колонны и шестиугольной плиты перекрытия. Каждая плита опирается в центре на колонну, образуя своеобразный грибок. Примыкая друг к другу боковыми гранями, грибки объединяются в сотовую структуру и после сварки и замоно-личивания превращаются в единую пространственную систему. Благодаря частому шагу колонн и пространственной работе каркаса высота ребер плит доведена до 15 см, а вся толщина перекрытия с конструкцией пола составляет 20 см.

Из шестигранных элементов грибовидного каркаса можно создавать самые разнообразные архитектурно-конструктивные композиции. Несмотря на художественные достоинства, эта разновидность каркаса имеет серьезный планировочный недостаток, ограничивающий его применение. Частый шаг колонн, расположенных в шахматном порядке, затрудняет функциональное решение большинства типов зданий, особенно при широком корпусе.

Модификация этой системы привела к варианту каркаса, в котором, наряду с основными плитами перекрытий, опирающимися центрично на колонны, имеются пролетные плиты, опертые на основные (рис. 12.79 б). Введение пролетных плит перекрытий позволило резко увеличить размер треугольной планировочной сетки (с 3,2 до 6,6 м), что значительно улучшило архитектурные качества каркаса.

Рис. 12.79. Безригельный грибовидный каркас с плоскими перекрытиями (Украина): а - на треугольной сетке колонн со стороной 3,2 м; б - на треугольной сетке со стороной 6,6 м; 1 - колонна; 2 - надколонная (капительная) плита; 3 - пролетная плита; 4 - доборная фасадная плита

Каркас с консольно-ригельными плитами (рис. 12.80) запроектирован для планировочной сетки 6 х 6 м и включает три основные сборные железобетонные элемента - колонну на этаж, надколонную ребристую плиту, асимметрично опирающуюся на колонну и торец соседней плиты, а также плиту-вкладыш.

Преимущества каркаса: простота узлов соединений и монтажа элементов, возможность взаимного смещения рядов колонн, т.е. трансформации планировочной сетки, и возведения зданий сложной конфигурации.

Рис. 12.80. Каркас с консольно-ригельными асимметрично опертыми надколонными плитами (Украина): а - общая схема; б - схема раскладки плит перекрытий; 1 - надколонная плита; 2 - плита-вкладыш; 3 - разрезка в местах, близких к линиям нулевых моментов

Сборно-монолитная система КУБ-2,5 (каркас универсальный безригельный) позволяет строить жилые дома, здания общественного назначения в едином конструктивном ключе, по единой технологии изготовления и монтажа строительных конструкций. Система представляет собой связевый каркас, состоящий из многоэтажных неразрезных колонн прямоугольного сечения и сплошных плит перекрытий (рис. 12.82). КУБ-2,5 соответствует уровню прогрессивных современных индустриальных каркасных конструкций. Отличительная особенность системы - монтаж плит перекрытия на колонну и соединение плит перекрытий между собой производятся без поддерживающих элементов.

Конструкция стыков колонн исключает сварку, так как стык колонн сечением 400х400 мм предусматривает принудительный монтаж, при котором фиксирующий стержень нижнего торца колонны должен войти в патрубок верхнего торца нижней колонны.

Конструкции каркаса предполагают высоту этажей 2,8; 3,0; 3,3 м при основной сетке колонн 6x6м. При необходимости высоту этажа можно увеличить до 6 м, а шаг колонн - до 12 м.

Конструкции КУБ-2,5 применяются при возведении общественных зданий в 1-3 этажа большой пролетности с техподпольем и жилых зданий в 4-22 этажа.

Рис. 12.82. Сборно-монолитный безригельный каркас КУБ-2,5: а - монтажная схема; б - стык колонн; в - узел «колонна-плита»

Монолитные безригельные каркасы проектируют на основе квадратной или прямоугольной сетки колонн, при этом соотношение между большим и меньшим пролетами ограничивается как 4/3. Наиболее рациональна квадратная сетка колонн 6x6м.

В монолитных безригельных каркасах сплошная железобетонная плита опирается непосредственно на колонны с капителями (рис. 12.83). Капители обеспечивают жесткое сопряжение плиты с колоннами и прочность плиты на продавливание по периметру колонны, уменьшают расчетный пролет плиты. Капители колонн конструируют в виде усеченной пирамиды с углом наклона граней 45° или двойной усеченной пирамиды ломаного очертания.

Толщину монолитной плиты принимают из условия ее необходимой жесткости в пределах 1/32-1/35 от величины наибольшего пролета. Плиты армируют плоскими или рулонными сварными сетками. При этом пролетные из­гибающие моменты воспринимаются сетками, уложенными в нижней зоне, а опорные - в верхней зоне плиты.

Один из эффективных вариантов монолитного безригельного каркаса для зданий с мелкоячеистой планировочной структурой - вариант с узкими колоннами в виде коротких стенок-диафрагм без капителей (рис. 12.84).

Колонны такого вида позволяют использовать их в качестве ограждающих элементов при одновременном уменьшении пролетов плит и увеличении жесткости каркаса. Колонны могут быть не только плоскими, ориентируемыми на плане в разных направлениях, но и пространственными (рис. 12.84 б), логично вписывающимися в планировочную структуру здания.

Данная система является открытой, позволяет создавать разнообразные объемно-планировочные решения жилых, учебных, административных и других зданий со средними по величине пролетами - до 7,5 м.

Рис. 12.83. Монолитный безригельный каркас: а - капители колонн и их армирование; б - расположение рабочей арматуры в плите (план); в - фрагмент разреза каркаса с изображением армирования плиты; 1 - рабочая арматура; 2 -конструктивная арматура


Рис. 12.84. Монолитный безригельный каркас с колоннами в виде коротких стенок-диафрагм: а - фрагменты фасада и плана здания коридорного типа; б - возможные формы сечений колонн; в - формы колонн переменного сечения по высоте

Здание проектируется каркасной системы с «навесными» наружными стенами. Рама воспринимает вертикальные нагрузки, а также горизонтальные нагрузки, которые передаются через диск перекрытия. Рамой является система стоек - колонн, соединенных жестко с монолитными безригельными плитами перекрытия.

В продольном и поперечном направлении каркас здания работает по рамной системе.

Рис. 1.

Наружные стены выполнены из шлакоблоков.

Междуэтажные перекрытия приняты монолитными железобетонными, марка бетона B30.

Фундаменты под колонны - монолитные железобетонные столбчатого типа, площадь подошвы определяется по предварительному расчету.

Согласно инженерно-геологических изысканий основанием под фундаменты являются следующие грунты:

Щебенистый крупнообломочный грунт: плотность с=2,10 г/см3, угол внутреннего трения ц=34°, удельное сцепление c=1 кПа, расчетное сопротивление R0=400 кПа; модуль деформации E=34 МПа.

В данном разделе выполнен расчет элементов надземной части монолитного каркаса гаражного комплекса по ул. Кирова в г. Владивостоке:

· безригельной монолитной плиты перекрытия (вариант 1);

· монолитного ребристого перекрытия (вариант 2);

· средней колонны и фундамента под колонну;

Расчет конструкций каркаса

Проектирование монолитной безригельной плиты перекрытия (вариант 1)

Обоснование расчетной схемы, метода расчете, геометрических параметров

Расчет ведем на примере фрагмента перекрытия в осях 2-3 и А-Б.

Для расчета безригельного перекрытия его делят на полосы шириной, равной половине пролета в каждом направлении (рис. 2) .

На основе экспериментальных исследований и данных эксплуатации расчет упрощен применением эмпирических коэффициентов. При этом расчете надколонные и пролетные полосы перекрытия рассматривают как неразрезные изгибаемые плиты. Надколонные полосы считают лежащими на неподатливых опорах, которыми служат колонны, а пролетные полосы считают лежащими на упругих податливых опорах, которыми являются надколонные полосы, направленные перпендикулярно рассчитываемым пролетным (рис. 3).


Рис. 2.

Рис. 3. Обозначение расчетных изгибающих моментов в плите

Характеристики прочности бетона и арматуры.


Бетон тяжелый класса В30; расчетные сопротивления при сжатии Rb=17 МПа, при растяжении Rbt=1,2 МПа; коэффициент условий работы бетона b2=0,9; модуль упругости Eb=32500МПа. Арматура рабочая класса А-III, расчетное сопротивление Rs=365МПа, модуль упругости Es=200000МПа; коэффициент условий работы стали b2=0,9.

Сбор нагрузок

Таблица 7

Сбор нагрузки на 1 м2 перекрытия надземной части здания.

Расчет на продавливание

Чтобы проверить достаточность принятой толщины плиты, выполним расчет на продавливание.

Условие прочности на продавливание,

где - продавливающая сила;

Расчетное сопротивление бетона на растяжение;

Полезная высота сечения;

Среднее арифметическое между периметрами верхнего и нижнего оснований пирамиды продавливания.


Рис. 4.

Условие выполнено.

Прочность на продавливание обеспечена.

Определение усилий

Для расчета безригельного перекрытия разделим его на полосы шириной, равной половине пролета в каждом направлении.

В каждом направлении определяем соответствующие изгибающие моменты, вычисляемые как для свободно опертой панели, покоящейся на широких опорах.

Панельный изгибающий момент МП1=МП2, так как l1=l2=7000 мм:


Рис. 5.

Найденные изгибающие моменты распределяют на надколонную и пролетную полосы, рассматривая их как самостоятельные неразрезные плиты. На надколонную, более жесткую полосу, передается 70%, а на пролетную - 30% изгибающего момента. Эти доли распределяют между опорными и пролетными сечениями соответствующих полос следующим образом:

для надколонной полосы в направлении l1:

· на опорах

· в пролете

для пролетной полосы в направлении l1:

· на опорах

· в пролете

Моменты в направлении l2 будут равны моментам в направлении l1, так как l1= l2=7000 мм.

Расчет сечений и их конструирование

Расчет плиты перекрытия в направлении l1=7000 мм.

а) надколонная полоса:

· В пролете:

h0 = h - a = 200 - 20 = 180 мм

Вычисляем m:

am=M2/(Rbbh02гb2)=9724/(170,13501820,9)=0,058;

где гb2 - коэффициент условия работы бетона.

По табл.3.1 находим

Aтрs=M2/(Rsh0гс)=9724/(3650,10,970180,9)=16,95 см2 ;

где гс - коэффициент условия работы стали.

Принимаем в пролете надколонной полосы 1712 А-III (s=200 мм) As=19,23 см2.

· На опоре:

Расчетное сечение: высота h = 200 мм, ширина b = 3500 мм, толщина защитного слоя бетона а=20 мм.

h0 = h - a = 200 - 20= 180 мм

Вычисляем m:

am=M1/(Rbbh02 гb2)=24310/(170,13501820,9)=0,139

По табл.3.1 находим

Определяем требуемую площадь арматуры:

Aтрs=M1/(Rsh0 гс)=24310/(3650,10,925180,9)=44,45 см2

Принимаем на опоре надколонной полосы 1816 А-III (s=200 мм) As=45,19 см2.

б) пролетная полоса:

· В пролете:

Расчетное сечение: высота h = 200 мм, ширина b = 3500 мм, толщина защитного слоя бетона а=20 мм.

h0 = h - a = 200 - 20= 180 мм

Вычисляем m:

am=M3/(Rbbh02 гb2)=7293/(170,13501820,9)=0,042

Определяем требуемую площадь арматуры:

Aтрs=M3/(Rsh0 гс)=7293/(3650,10,979180,9)=12,6 см2

· На опоре:

Расчетное сечение: высота h = 200 мм, ширина b = 3500 мм, толщина защитного слоя бетона а=20 мм.

h0 = h - a = 200 - 20= 180 мм

Вычисляем m:

am=M4/(Rbbh02 гb2)= 7293/(170,13501820,9)=0,042

По табл.3.1 интерполяцией находим

Определяем требуемую площадь арматуры:

Aтрs=M4/(Rsh0 гс)=7293/(3650,10,979180,9)=12,6 см2

Принимаем в пролете пролетной полосы 1710 А-III (s=200 мм) As=13,35 см2.

Расчет на образование трещин, нормальных к продольной оси

Расчет железобетонных элементов по образованию нормальных трещин производится из условия (233) :

Мr < Мcrc , где

Мr момент внешних сил, расположенных по одну сторону от рассматриваемого сечения, относительно оси, параллельной нулевой линии и проходящей через ядровую точку, наиболее удаленную от растянутой зоны, трещинообразование которой проверяется;

Мcrc -- момент, воспринимаемый сечением, нормальным к продольной оси элемента при образовании трещин, и определяемый по формуле:

Mcrc = Rbt,serWpl , здесь

Rbt,ser - расчетное сопротивление бетона осевому растяжению для предельных состояний второй группы, численно равное 1,4 МПа;

Wpl момент сопротивления приведенного сечения для крайнего растянутого волокна с учетом неупругих деформаций растянутого бетона, определяемый согласно по формуле (247) :

Wpl = Wred, здесь

Коэффициент, зависящий от формы поперечного сечения и определяемый по таблице 29 , численно равный 1,75;

Wred - момент сопротивления приведенного сечения.

Вычислим статический момент сопротивления приведенного сечения:

а - величина защитного слоя, равная 20 мм;

Вычислим площадь приведенного сечения:

Найдем расстояние от нижней грани до центра тяжести приведенного сечения:

Вычислим момент инерции приведенного сечения:


Находим момент сопротивления приведенного сечения:

Находим момент сопротивления приведенного сечения для крайнего растянутого волокна с учетом неупругих деформаций растянутого бетона:

Wpl = 1,75·24394,79=42690,88 см3

Находим момент трещинообразования:

Мcrc=1,8·10-1·42690,88=7684,35 кН·см

Момент внешних сил для изгибаемых элементов:

Мr = М=4932 кН·см

Мr =9724 кН·см > Мcrc=7684,35 кН·см - условие не выполняется.

Образуются трещины в сечениях, нормальных к продольной оси элемента. Необходимо выполнить расчет на раскрытие трещин.

Расчет на раскрытие трещин, нормальных к продольной оси

Ширину раскрытия трещин, нормальных к продольной оси элемента, acrc, мм, следует определяют по формуле (249) :

коэффициент, принимаемый равным для изгибаемых элементов 1;

l -- коэффициент, принимаемый равным 1,0 при кратковременных нагрузок и непродолжительного действия постоянных и длительных нагрузок; равным 1,5 при продолжительном действии постоянных и длительных нагрузок;

Коэффициент, принимаемый равным 1,0 для арматуры класса А-III;

s напряжение в стержнях крайнего ряда арматуры S;

коэффициент армирования сечения, принимаемый равным отношению площади сечения арматуры S к площади сечения бетона (при рабочей высоте ho), но не более 0,02:

Предельная ширина раскрытия трещины по табл. 1 : непродолжительная, продолжительная.

Изгибающие моменты от нормативных нагрузок:

· постоянной и длительной;

Приращение напряжений в растянутой арматуре от действия постоянной и длительной нагрузки определим по формуле (7.106) :

Ws - момент сопротивления растянутой арматуры, который определим по формуле (6.16) :

d - диаметр растянутой арматуры.

Вычислим приращение напряжений в растянутой арматуре от действия полной нагрузки:

Вычислим ширину раскрытия от непродолжительного действия полной нагрузки:

Вычислим ширину раскрытия от непродолжительного действия постоянной и длительной нагрузок:

Вычислим ширину раскрытия от действия постоянной и длительной нагрузок:

Найдем непродолжительную ширину раскрытия трещин:

Найдем продолжительную ширину раскрытия трещин:

Расчет на закрытие трещин, нормальных к продольной оси

Для надежного закрытия трещин, нормальных к продольной оси элемента, должны быть соблюдены следующие требования п. 7.6.5. :

Предварительное напряжение в арматуре с учетом всех потерь, равное 0;

Приращение растягивающего напряжения в арматуре от действия внешних нагрузок;

Расчетное сопротивление арматуры растяжению для предельных состояний второй группы, для арматуры A-III равное 390 МПа табл.19* .

Требование выполнено, трещины закроются.

Расчет на прогиб

По табл.2 предельно допустимый прогиб [f] при 6 м? l ?7,5 м (l=7,0 м) равен 3 см.

Для изгибаемых элементов с защемленными опорами прогиб в середине пролета определяется по формуле (313) :

Кривизны элемента соответственно в середине пролета, на левой и правой опорах;

рm коэффициент, определяемый по табл. 35 как для свободно опертой балки, числено равный 5/48

Так как, то

Поскольку в растянутой зоне образуются нормальные к продольной оси трещины, кривизна определяется по формуле (271) :

Мs -- момент относительно оси, нормальной к плоскости действия момента и проходящей через центр тяжести площади сечения арматуры S, от всех внешних сил, расположенных по одну сторону от рассматриваемого сечения, равный для изгибаемых элементов:

Мs = М=97,24 кН·м;

z плечо внутренней пары сил. Значение z вычисляется по формуле:

s -- коэффициент, учитывающий работу растянутого бетона на участке с трещинами, определяется по формуле (280) :

ls коэффициент, учитывающий влияние длительности действия нагрузки и принимаемый по табл. 32 ;

Коэффициент, определяемый по формуле (281) :

b -- коэффициент, учитывающий неравномерность распределения деформаций крайнего сжатого волокна бетона по длине участка с трещинами и принимаемый равным 0,9 для тяжелого бетона;

f коэффициент, определяемый по формуле (277) :

Коэффициент. Значение вычисляется по формуле (274) :

Коэффициент, принимаемый равным 1,8 для тяжелого бетона;

Определяется по формуле (275) :

Определяется по формуле (276) :

v коэффициент, характеризующий упруго-пластическое состояние бетона сжатой зоны и принимаемый равным 0,15 по табл. 31 .

Вычислим:

Вычислим:

Вычислим:

Вычислим:

Вычислим:

Вычислим:

Вычислим:

Вычислим:


Находим прогиб:

f=1,41 < [f]=3 см, прогиб не превышает предельно допустимый.


Владельцы патента RU 2588229:

Изобретение относится к области строительства, а именно к железобетонным безригельным многоэтажным каркасам для строительства жилых, промышленных и гражданских зданий, как для обычных условий строительства, так и для строительства в сейсмических районах.

Из достигнутого уровня техники известен контактный стык сборных железобетонных колонн с обрывом стержней продольной рабочей арматуры в стыке, с опиранием торцов колонн по слою высокопрочного раствора, при этом по опорным торцам колонн установлены стальные пластины, предусмотрена установка сквозь стык арматурных стержней-коротышей в каналах заполненных высокопрочным раствором, предусмотрено окаймление торца в виде стального выступа, а также установка стальных вкладышей в центре и по контуру стыка в зазоре между стальными торцевыми пластинами равных величине зазора. (1) (см. патент РФ N 2233368, МКП E04B 1/38, 2004 г.).

Недостатком данного технического решения является высокая трудоемкость выполнения данного стыка, кроме этого применение в зоне контакта колонн разно деформируемых материалов приведет к концентрации напряжений в зонах менее деформируемых материалов и как результат - местному (локальному) трещинообразованию, а также сквозной пропуск стержней-коротышей в дополнительных каналах нарушает целостность железобетонного сечения колонн и как результат - снижение несущей способности стыкового соединения.

Известно также техническое решение по устройству контактных стыков сборных железобетонных колонн с обрывом рабочей арматуры, с опиранием торцов колонн на тонкий слой раствора без соединения арматуры (2) (см. А.П. Васильев, Н.Г. Матков, М.Ф. Жансеитов., Контактные стыки колонн с обрывом продольной арматуры., Бетон и железобетон N 8, 1982 г.)

Данное известное техническое решение и его экспериментальное исследование позволяет сделать вывод о целесообразности его применения для многоэтажных каркасов зданий. Недостатком данного стыкового соединения является то что оно непригодно для растягивающих усилий.

Известно устройство стыков железобетонных колонн с усилением металлическими элементами концевых стыкуемых участков железобетонных колонн. (3) (В.С. Плевков, М.Е. Гончаров, Исследование работы стыков железобетонных колонн усиленных металлическими элементами при статическом и кратковременном динамическом нагружениях, Вестник ТГСУ N 2, 2013 г.)

Данное исследование зоны стыков железобетонных колонн показывает, что несущая способность стыка с использованием металлических обойм в зоне стыкуемых колонн увеличивается на 30-40%.

Известно техническое решение узла соединения сборной железобетонной колонны и сборной надколонной плиты перекрытия безригельного безкапительного каркаса здания, в котором соединение осуществляется при помощи трапециевидных соединительных пластин, приваренных с одной стороны к обнаженной в зоне перекрытия силовой арматуре колонн, с другой стороны к замоноличенной в надколонной плите перекрытия стальной обечайке. (4) (см. патент РФ N 2203369, МКП E04B 1/38, 2003 г.)

Недостатком такого технического решения является трудоемкость и материалоемкость по устройству обечайки в надколонной плите перекрытия, кроме того у данного соединения до момента замоноличивания стыка недостаточная жесткость из-за высокой гибкости обнаженной силовой арматуры колонн. Следует отнести к недостаткам данного технического решения то обстоятельство, что к обнаженной силовой арматуре колонн выполняется сварное соединение трапециевидных соединительных элементов для крепления надколонных плит и в этом же уровне осуществляется сварочное соединение соединительных элементов продольной силовой арматуры колонн. Данное обстоятельство приводит к снижению качества сварных соединений. К отрицательным качествам данного технического решения относится также поэтажная корректировка положения выпусков силовой арматуры колонн при изменении ее поэтажного диаметра.

Известно соединение плиты безбалочного сборно-монолитного перекрытия со сборной колонной где колонна в зоне опирания плиты имеет углубление по периметру колонны (5) (патент СССР N 872674, МКИ E04B 1/20, 1981 г.)

Недостатком данного технического решения является недостаточная несущая способность данного стыка на продавливание при плоском перекрытии.

Известно техническое решение стыкового соединения монолитного безбалочного железобетонного перекрытия с монолитной колонной в котором на вертикальных арматурных каркасах перекрытия жестко закреплены стальные пластины в зоне стыка, пластины выполнены длиной не менее 2h+2a, где h - толщина плиты, a - толщина защитного слоя бетона. (6) (см. патент РФ N 2194825, МКП Е04 В 5/43,2002 г.).

Данное техническое решение повышает несущую способность стыкового соединения на перерезывающую силу.

Наиболее близким техническим решением, принятое за прототип, является конструкция безригельного бескапительного железобетонного каркаса, который включает одно и более этажные бесконсольные сборные колонны с обнаженной силовой арматурой в местах пересечения с перекрытием, сборные надколонные плиты перекрытия со сквозными отверстиями обрамленные стальной обечайкой для пропуска многоэтажных колонн и стыкового соединения с ними, сборные пролетные плиты, монолитные участки объединенные между собой в единый диск перекрытия, при этом монтаж пролетных плит перекрытия осуществляется выступающими консолями на ответно соответствующие опорные столики, надколонные и пролетные плиты имеют на торцевых ребрах петлевые выпуски сквозь перехлест которых пропускают арматурные стержни с последующим обетонированием полости стыков. (7) (см. патент РФ N 2247812, МКП E04B 5/43, 2005 г.)

Техническое решение межплитных швов в данной конструкции безригельного каркаса является шарнирным, что ограничивает величину пролета сборно-монолитного перекрытия. Кроме того данная конструкция сборно-монолитного перекрытия является жесткой для вариантов решения объемно-планировочных задач, а также для данного технического решения справедливы недостатки изложенные к аналогу (4).

Задачей изобретения сборно-монолитного безригельного каркаса является увеличение диапазона решения объемно-планировочных задач, повышение несущей способности конструкций каркаса и его узловых соединений, повышение технологичности работ по возведению конструкций каркаса.

Данное изобретение сборно-монолитного железобетоного безригельного каркаса представляет собой ряд технических решений с вариантами исполнения сборных элементов каркаса и их возможной компоновки в сочетании с монолитными участками в зависимости от от факторов планировочного, технологического характера, а также индустриальной базы производства сборных железобетонных изделий.

Представлены варианты технических решений сборно-монолитного железобетоного безригельного каркаса с шарнирными монолитными межплитными швами, с жесткими (неразрезными) монолитными межплитными швами, а также варианты свободного сочетания сборных-железобетонных элементов с пролетными монолитными участками перекрытия, объединенными между собой в неразрезной диск перекрытия.

На чертежах изображено:

на фиг. 1 - схематичный фрагмент плана сборно-монолитного безригельного каркаса с вариантами конфигурации сборных элементов каркаса и их возможной компоновки в сочетании с монолитными участками;

на фиг. 2 - укрупненный фрагмент I плана перекрытия железобетонного безригельного каркаса с шарнирными монолитными межплитными швами между сборными надколонными и пролетными плитами перекрытия;

на фиг. 3 - укрупненный фрагмент II плана перекрытия железобетонного безригельного каркаса с жесткими (неразрезными) монолитными межплитными швами между сборными плитами перекрытия;

на фиг. 4 - укрупненный фрагмент III плана перекрытия железобетонного безригельного каркаса с жесткими (неразрезными) монолитными межплитными швами между сборными плитами перекрытия и жестким (неразрезным) соединением сборных плит с монолитными пролетными участками перекрытия;

на фиг. 5 - поперечный разрез I-I (с раскосными связями);

на фиг. 6 - поперечный разрез I-I (с монолитными диафрагмами);

на фиг. 7 - Узел 1 (сечение A1-A1) - узел стыкового соединения многоэтажной неразрезной сборной бесконсольной колонны со сборной надколонной плитой перекрытия;

на фиг. 8 - вид B1-B1 узла 1 - стыкового соединения многоэтажной неразрезной сборной бесконсольной колонны со сборной надколонной плитой перекрытия;

на фиг. 9 - Узел 2 (сечение A2-A2) - узел стыкового соединения сборных бесконсольных колонн между собой и стыкового соединения колонн с надколонной плитой перекрытия;

на фиг. 10 - вид B2-B2 узла 2 - стыкового соединения сборных бесконсольных колонн между собой и стыкового соединения колонн с надколонной плитой перекрытия;

на фиг. 11 - сечение A4-A4 - сечение по стыковому соединению сборных бесконсольных колонн между собой и с монолитным участком перекрытия;

на фиг 12 - вид B3-B3-по стыковому соединению сборных бесконсольных колонн между собой и с монолитным участком перекрытия;

на фиг. 13 - Узел 2 (сечение A3-A3) - узла стыкового соединения сборных бесконсольных колонн между собой и стыкового соединения колонн с надколонной плитой перекрытия;

на фиг. 14 - сечение A5-A5 - сечение по стыковому соединению сборных бесконсольных колонн между собой и с монолитным участком перекрытия;

на фиг. 15 - сечение A6-A6 по стыку монтажного опорного выступа и монтажной опорной площадки для монтажа надколонных и пролетных плит перекрытия для перекрытия с шарнирными межплитными швами;

на фиг. 16 - сечение A7-A7 по устройству монолитного межплитного шва для перекрытия с шарнирными межплитными швами;

на фиг. 17 - сечение A8-A8 по узлу монтажной фиксации сборных плит перекрытия между собой для перекрытия с жесткими (неразрезными) межплитными швами;

на фиг. 18 - сечение A9-A9 по устройству монолитного межплитного шва с жестким (неразрезным) соединением сборных плит перекрытия;

на фиг. 19 - сечение A10-A10 по жесткому (неразрезному) узлу соединения сборных плит перекрытия с монолитным пролетным участком перекрытия для бессварочного соединения при помощи п-образных анкеров и п-образных анкерных выпусков;

на фиг. 20 - сечение A11-A11 по жесткому (неразрезному) узлу соединения сборных плит перекрытия с монолитным пролетным участком перекрытия путем приваривания п-образных анкеров к закладным деталям сборных плит перекрытия;

на фиг. 21 - сечение A12-A12 по жесткому (неразрезному) узлу соединения сборных плит перекрытия с монолитным пролетным участком перекрытия путем приваривания п-образных анкеров усиленных жесткими вставками к закладным деталям сборных плит перекрытия;

на фиг. 22 - укрупненный фрагмент IV детализация фрагмента перекрытия с балконным участком плиты, а также устройством навесной наружной стены с облицовочным слоем из кирпича;

на фиг. 23 - вид B4-B4 - деталь крепления контурного опорного уголка для опирания облицовочного слоя наружной стены из кирпича;

на фиг. 24 - сечение А13-А13 по армированию ребра между отверстиями для размещения пакетов утеплителя на балконных участках сборных плит перекрытия;

на фиг. 25 - сечение А14-А14 по размещению пакетов утеплителя на балконных участках в теле сборных плит перекрытия;

на фиг. 26 - Узел 5 (сечение А15-А15) узел по устройству поэтажной навесной наружной стены с облицовочным слоем из кирпича;

на фиг. 27 - сечение А16-А16 - по устройству поэтажной навесной наружной стены из сборных трехслойных стеновых панелей;

на фиг. 28 - Узел 6 (сечение А17-А17) узел по устройству наружного ограждения с навесным вентилируемым фасадом;

на фиг. 29 - Узел 3 - узел крепления раскосных связей в верхнем уровне между собой и со связевой плитой перекрытия;

на фиг. 30 - вид В5-В5 узла 3 - крепления раскосных связей со связевой плитой перекрытия;

на фиг. 31 - сечение А18-А18 по узлу 4 - крепления раскосных связей в верхнем уровне между собой;

на фиг. 32 - Узел 4 - узел крепления раскосных связей к колонне в нижнем уровне;

на фиг. 33-сечение А19-А19 по узлу крепления раскосных связей к колонне в нижнем уровне;

на фиг. 34 - Узел 7 - узел соединения монолитной диафрагмы с колонной;

на фиг. 35 - сечение А20-А20 по узлу соединения монолитной диафрагм с колонной;

на фиг. 36 - сечение А21-А21 по междуэтажному соединению монолитных диафрагм.

Железобетонный сборно-монолитный безригельный каркас с шарнирными монолитными межплитными швами включает железобетонные одно и более этажные бесконсольные колонны 1, сборные надколонные плиты перекрытия 2 с отверстиями 3 для пропуска колонн 1 и стыкового соединения с ними, сборные пролетные плиты 4, монолитные участки в виде шарнирных межплитных швов объединенные в единый диск перекрытия, при этом сборные надколонные плиты перекрытия 2 и пролетные плиты 4, для монтажной сборки, снабжены монтажными опорными выступами 5 и опорными площадками 6, причем по опорным поверхностям опорных выступов 5 и опорных площадок 6 установлены закладные детали, например из стальных уголков 7, к которым приварены - образные ребра жесткости 8 из вертикальных стальных пластин, замоноличенных в тело сборных плит 2 и 4 и соединенных на сварке с продольными верхними и нижними стержнями анкерующих каркасов 9. В шарнирных монолитных межплитных швах между сборными плитами 2, 4 на участках между монтажными опорами 5, 6, вдоль межплитных швов, предусмотрена установка верхнего и нижнего горизонтальных стержней 10 по внутренним углам перехлеста п-образных петлевых анкерных выпусков 11, установленных по торцам сборных плит 2, 4 с последующим обетонированием монолитным бетоном 12.

Железобетонный сборно-монолитный безригельный каркас с жесткими монолитными межплитными швами включает сборные железобетонные одно и более этажные бесконсольные колонны 1, сборные надколонные плиты перекрытия 13 с отверстиями 3 для пропуска колонн 1 и стыкового соединения с ними, сборные пролетные плиты перекрытия 14, уширенные монолитные межплитные швы, либо монолитные пролетные участки 15 объединенные в единый неразрезный диск перекрытия, при этом монтажная фиксация сборных плит перекрытия 13, 14 осуществляется при помощи стальных пластин 16 привариваемых к закладным деталям из швеллерных профилей 17 и к вертикальным петлевым анкерным выпускам трапециевидной формы 18 располагаемых на смежных торцевых поверхностях стыкуемых плит, при этом соединение сборных плит 13 и 14, на участках между участками монтажной фиксации, выполняется по уширенным монолитным межплитным швам путем установки, вдоль контура стыка, верхних и нижних горизонтальных арматурных стержней 10, располагаемых по внутренним углам перехлеста п-образных петлевых анкерных выпусков 19 из торцевых граней смежных сборных плит перекрытия 13 и 14, при этом длина перехлеста п-образных петлевых анкерных выпусков 19 из торцевых граней смежных плит перекрытия 13, и 14 должна быть не менее 15d, где d - диаметр анкерных выпусков.

Для варианта исполнения сборно-монолитного железобетонного безригельного каркаса с заменой одной либо нескольких пролетных плит 14 монолитным пролетным участком 15, соединение сборных плит 13 и 14 с монолитным пролетным участком 15 осуществляется путем установки вдоль контура стыка горизонтальных верхних и нижних арматурных стержней 10 по внутренним углам перехлеста п-образных вертикальных петлевых анкерных выпусков 19 из торцевых поверхностей сборных плит перекрытия 13 и 14 и вертикальных п-образных петлевых анкеров 20, устанавливаемых по контуру примыкания монолитных пролетных участков 15 со сборными плитами перекрытия 13, 14, при этом длина перехлеста вертикальных п-образных петлевых анкерных выпусков 19 из торцевых граней смежных плит перекрытия 13, и 14 и вертикальных п-образных петлевых анкеров 20 должна быть не менее 15d, где d - максимальный диаметр анкерных выпусков 19 либо анкеров 20.

Соединение сборных плит перекрытия 13 и 14 с монолитным пролетным участком 15 возможно также выполнять при помощи вертикальных п-образных петлевых анкеров 20 либо 21 привариваемых к вертикальным закладным деталям из швеллерных профилей 17, располагаемых на торцевых поверхностях сборных плит перекрытия 13, 14, при этом п-образные петлевые анкера 21, на концевых участках имеют ребра жесткости 22 из стальных пластин приваренных по вертикальной оси, между верхним и нижним стержнями п-образных петлевых анкеров 21.

Устройство балконных участков перекрытия предлагается выполнять в двух вариантах:

либо балконная часть перекрытия опирается на колонны 1 вынесенные за наружное ограждение здания с наружными надколонными балконными плитами 23 и пролетными балконными плитами 24, либо балконная часть перекрытия выполняется заодно (неразрезно) с надколонными 2, 13 и пролетными 4, 14 плитами перекрытия, при этом в плитах 2, 4, 13, 14 предусмотрены отверстия 25, в плоскости наружного ограждения, для размещения пакетов утеплителя, при этом армирование ребер между отверстиями 25 осуществляется вертикальными арматурными каркасами 26, которые имеют ребра жесткости 27 из стальных пластин приваренных в верхнему и нижнему стержням арматурных каркасов 26.

Для сборно-монолитного железобетонного безригельного каркаса с монолитными шарнирными либо жесткими монолитными межплитными швами, продольные межплитные швы выполнены вразбежку со смещением в каждом поперечном ряду стыкуемых сборных плит перекрытия 2, 4, 13, 14 на величину не менее длины анкеровки максимального диаметра рабочей арматуры плит 2, 4, 13, 14.

Устройство опорного соединения надколонных плит 2, 13 со сборными безконсольными колоннами 1 осуществляется следующим образом: колонны 1 выполнены с вертикальными закладными деталями 28, 29, 30 установленными в углублении 31 от наружных граней колонны 1 по ее периметру в пределах и не менее толщины перекрытия, надколонные плиты 2, 13 выполнены с вертикально расположенными трапециевидными выпусками 32 из стальных пластин жестко связанными с верхними и нижними стержнями анкерных арматурных каркасов 33, установленных по периметру сквозных отверстий 3.

Соединение сборных колонн 1 и надколонных плит 2, 13 выполняется при помощи стальных соединительных элементов 34, например из неравнобоких уголков привариваемых к вертикальным закладным деталям 28, 29 колонн 1 и к вертикальным трапециевидным выпускам 32 из надколонных плит перекрытия 2, 13 с последующим обетонированием полости стыка между углубленной частью 31 колонны 1 и торцевыми поверхностями 35 сквозных отверстий 3 надколонных плит перекрытия 2, 13, при этом торцевые поверхности 35 надколонных плит 2, 13 наклонены от вертикали образуя клинообразную полость омоноличенного стыка.

При осуществлении соединения железобетонных бесконсольных колонн 1 с монолитным пролетным участком перекрытия 15 выполняется установка вертикальных п-образных петлевых анкеров 21 привариваемых к вертикальным закладным деталям 28, 29 колонн 1, установленных в углублении 31 от наружных граней, по контуру колонны 1, при этом п-образные петлевые анкера 21 на концевых участках имеют ребра жесткости 22 из стальных пластин приваренных, по вертикальной оси, между верхним и нижним стержнями петлевых анкеров 21 с последующим обетонированием монолитным участком перекрытия 15.

Стыковое соединения бесконсольных железобетонных колонн 1 каркаса осуществляется путем опирания друг на друга плоскими торцами через растворный шов 36 в пределах толщины междуэтажного перекрытия, при этом торцы стыкуемых колонн 1 выполнены с косвенным армированием арматурными сетками 37 и внутренними арматурными обоймами 38, кроме этого по периметру торцов стыкуемых колонн 1 предусмотрены вертикальные закладные детали 29, 30 в углублении 31 от наружных граней колонны 1.

Соединение стыкуемых колонн 1 выполняется посредством сварки V-образных арматурных соединительных элементов 39 по плоскостям вертикальных закладных деталей 29, 30 с последующим обетонированием монолитным бетоном перекрытия.

Кроме технических решений, имеющих существенные отличия от технических решений аналогов и прототипа, в иллюстрационном примере сборно-монолитного железобетонного безригельного каркаса применены также технические решения которые не являются предметом данного изобретения, но их применение в данном примере сборно-монолитного железобетонного безригельного каркаса является целесообразным.

В примере исполнения представлено устройство раскосных связей 40, которые рекомендуется устраивать при строительстве сборно-монолитного безригельного каркаса в обычных условиях строительства, также при сейсмичности не более 7 баллов.

Соединение раскосных связей 40 осуществляется в нижнем уровне при помощи соединительных пластин 41, приваренных к закладным деталям колонн 1 и раскосных связей 40, в верхнем уровне посредством сварки промежуточного элемента 42 коробчатого сечения к закладным деталям раскосов 40 и к анкерным выпускам 18 трапециевидной формы из торцевых граней отверстия связевой плиты перекрытия 43 при помощи стальных пластин 44, при этом концевые участки анкерных выпусков 18 снабжены жесткими вставками 22 из стальных пластин между верхним и нижним стержнями анкерного выпуска 18. Полость стыкового соединения раскосных связей 40 со связевой плитой перекрытия 43 обетонируется бетоном 12.

Для условий строительства с сейсмичностью 8 и более баллов рекомендуется в сборно-монолитном безригельном каркасе выполнять монолитные диафрагмы жесткости 45.

Монолитные диафрагмы жесткости содержат, кроме двухстороннего армирования по полю монолитной диафрагмы, вертикальную арматуру 46 и элементы соединения с фундаментом, колоннами, плитами перекрытия из жестких вставок 46 и арматурных анкерных каркасов 48.

Устройство поэтажного навесного наружного ограждения выполняется с применением, например, кирпичного облицовочного слоя 49, который укладывается по контурному уголку 50 приваренному к закладным деталям швеллерного сечения 51 располагаемых по наружному торцу междуэтажного перекрытия, причем контурный уголок имеет вертикальные прорези 52 для выполнения вертикального сварочного флангового шва в месте стыковки с закладными деталями 51, кроме того по опорной поверхности контурного уголка 50, вдоль наружного края приварен горизонтальный упорный стержень 53, для предотвращения соскальзывания облицовочной кирпичной кладки 51 с опорной поверхности контурного опорного уголка 50. Под контурным опорным уголком 50 поэтажно укладывается герметизирующая упругая прокладка 54. С наружной стороны кирпичной кладки 49 поэтажный горизонтальный шов опирания и герметизации кирпичной облицовочной кладки закрывают декоративным нащельником 55.

Вариантом поэтажного навесного наружного ограждения служат, например, сборные наружные стеновые панели 56 опертые поэтажно по слою цементно-песчаного раствора на междуэтажные перекрытия. Для фиксации наружных стеновых панелей 56 в плоскости фасада здания 57, на стыкуемых торцах наружных стеновых панелей 56 предусмотрены уступ 58 и выступ 59, которые при стыковке «насухо» обеспечивают совпадение фасадных поверхностей стыкуемых наружных стеновых панелей 56 с плоскостью фасада здания 57. Нижние и верхние торцевые поверхности стыкуемых наружных стеновых панелей 56 разделены герметизирующими упругими прокладками 54. С наружной стороны швы между наружными стеновыми панелями 56 закрываются декоративным нащельником 60.

Для наружного ограждения с применением вентилируемого фасада 61, поэтажно, по контуру плит перекрытия выполняют ограждающую конструкцию из кирпичной кладки 62, либо из сборных железобетонных перегородок, к которым крепится система конструкций вентилируемого фасада 61. Наружное ограждения подвальной части здания выполнено с применением сборных вертикальных стеновых плит 63 установленных вдоль наружного контура перекрытия. Стеновые плиты 63 опираются на перекрестный монолитный железобетонный пояс 64, имеющий периметральный уступ 65 для восприятия горизонтальных усилий от давления грунта.

1. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что стыкуемые колонны опираются друг на друга плоскими торцами через растворный шов в пределах толщины перекрытия, при этом торцы стыкуемых колонн выполнены с косвенным армированием арматурными сетками и внутренними арматурными обоймами, кроме этого, по периметру торцов стыкуемых колонн предусмотрены вертикальные закладные детали в углублении от наружных граней колонны, при этом соединение стыкуемых колонн осуществляется посредством сварки V-образных арматурных соединительных элементов по плоскостям вертикальных закладных деталей с последующим обетонированием стыка монолитным бетоном перекрытия.

2. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что колонны выполнены с вертикальными закладными деталями установленными в углублении от наружных граней колонны по ее периметру в пределах толщины перекрытия, а надколонные плиты перекрытий выполнены с вертикально расположенными трапециевидными выпусками из стальных пластин жестко связанными с верхними и нижними стержнями анкерных арматурных каркасов, установленных по периметру сквозных отверстий, при этом соединение сборных колонн и надколонных плит перекрытия осуществляется при помощи опорных стальных соединительных элементов в виде пластин либо неравнобоких уголков, привариваемых к вертикальным закладным деталям колонн и к вертикальным трапециевидным выпускам из надколонных плит перекрытия с последующим обетонированием полости стыка между углубленной частью колонн и торцевыми поверхностями сквозных отверстий надколонных плит перекрытия, при этом торцевые поверхности сквозных отверстий надколонных плит перекрытия наклонены от вертикали, образуя клинообразную полость омоноличенного стыка.

3. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что продольные монолитные участки в виде межплитных швов выполнены вразбежку со смещением в каждом поперечном ряду стыкуемых сборных плит перекрытия на величину не менее длины анкеровки максимального диаметра рабочей арматуры сборных плит перекрытия.

4. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что сборные надколонные и сборные пролетные плиты снабжены монтажными опорными выступами и опорными площадками, причем по опорным поверхностям опорных выступов и опорных площадок установлены закладные детали из стальных пластин либо уголков, к которым приварены - образные ребра жесткости из вертикальных пластин, замоноличенных в тело сборных плит перекрытия и соединенных на сварке с продольными верхними и нижними стержнями вертикальных анкерующих каркасов.

5. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что монтажная фиксация сборных плит перекрытия между собой осуществляется при помощи стальных пластин, привариваемых к закладным деталям из швеллерных профилей и к вертикальным петлевым анкерным выпускам трапециевидной формы, располагаемых на смежных торцевых поверхностях стыкуемых плит, при этом соединение сборных плит на участках между участками монтажной фиксации выполняется путем установки вдоль контура стыка верхних и нижних горизонтальных арматурных стержней, располагаемых по внутренним углам перехлеста п-образных петлевых анкерных выпусков из торцевых граней смежных сборных плит перекрытия, при этом длина перехлеста п-образных петлевых анкерных выпусков из торцевых граней смежных плит перекрытия должна быть не менее 15d, где d - диаметр анкерных выпусков, с последующим обетонированием полости межплитного шва.

6. Сборно-монолитный железобетонный безригельный каркас по п. 5, отличающийся тем, что вертикальные петлевые анкерные выпуски трапециевидной формы, располагаемые на торцевых поверхностях стыкуемых плит на концевых участках, имеют ребра жесткости из стальных пластин, приваренных по вертикальной оси анкерных выпусков к их верхнему и нижнему стержням.

7. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что соединение сборных надколонных и сборных пролетных плит перекрытия с монолитными пролетными участками перекрытия осуществляется путем установки вдоль контура стыка горизонтальных верхних и нижних арматурных стержней, располагаемых по внутренним углам перехлеста п-образных петлевых анкерных выпусков из торцевых граней сборных плит перекрытия и вертикальных п-образных петлевых анкеров, установленных по контуру примыкания монолитных пролетных участков перекрытия со сборными плитами перекрытия, при этом длина перехлеста п-образных петлевых анкерных выпусков из торцов сборных плит перекрытия и п-образных петлевых анкеров, установленных по контуру примыкания монолитных пролетных участков со сборными плитами перекрытия, должна быть не менее 15d, где d- диаметр анкеров и анкерных выпусков.

8. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что соединение сборных плит перекрытия с монолитными пролетными участками перекрытия осуществляется при помощи вертикальных п-образных петлевых анкеров, привариваемых к вертикальным закладным деталям из швеллерных профилей, располагаемых на торцевых поверхностях сборных плит перекрытия, при этом п-образные петлевые анкеры на концевых участках имеют ребра жесткости из стальных пластин, приваренных по вертикальной оси петлевых анкеров между их верхним и нижним стержнями, с последующим обетонированием соединения монолитным пролетным участком перекрытия.

9. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что на балконных участках надколонных либо пролетных плит перекрытия, которые имеют отверстия в плоскости расположения наружных стен для размещения пакетов утеплителя, армирование ребер между отверстиями для размещения пакетов утеплителя осуществляется вертикальными арматурными каркасами, которые имеют ребра жесткости из стальных пластин, приваренных к верхнему и нижнему арматурным стержням вертикальных каркасов.

10. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, монолитным перекрытием, отличающийся тем, что колонны выполнены с вертикальными закладными деталями, установленными в углублении от наружных граней колонны по ее периметру в пределах толщины перекрытия, при этом соединение сборных колонн с монолитным перекрытием осуществляется при помощи вертикальных п-образных петлевых анкеров, привариваемых к вертикальным закладным деталям колонн, причем п-образные петлевые анкеры на концевых участках имеют ребра жесткости из стальных пластин, приваренных по вертикальной оси петлевых анкеров между их верхним и нижним стержнями, с последующим обетонированием соединения бетоном монолитного перекрытия.

Изобретение относится к области строительства, в частности к сборно-монолитному железобетонному безригельному каркасу. Каркас образован сборными безконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн, пролетными плитами и монолитными участками. Предложены варианты соединения колонн и плит перекрытий. Технический результат изобретения заключается в повышении несущей способности конструкций каркаса и его узловых соединений. 9 н. и 1 з.п. ф-лы, 36 ил

Основной архитектурный недостаток каркасных систем для применения их в гражданском строительстве являются выступающие в интерьер из плоскости перекрытий балки-ригели. Существуют конструктивные схемы каркасов позволяющие исключить этот недостаток:

  • Система, формирующаяся из сборных плит сплошного сечения, опираемых на колонны в угловых точках сетки колонн (система КУБ);
  • Каркасная система с предварительно-напряженной арматурой в скрытых ригелях, образуемых в построечных условиях (система КПНС).
Система безригельного каркаса КУБ (рис. 16. 6) - сборный безкапительный каркас, состоящий из колонн квадратного сечения и плоских плит перекрытий.

Сетки колонн 6x3 и 6x6 метров при необходимости могут увеличиваться до размеров 6х9 и 9х12 метров. Сечение колонн 30x30 см и 40x40 см высотой в один или несколько этажей с максимальной высотой до 15,3 м.

Плиты перекрытия в плане размером 2,8x2,8 м толщиной от 16 до20 см. В зависимости от расположения, подразделяются на: - надколонные, межколонные и плиты - вставки. Членение перекрытия на сборные элементы сделано с таким расчетом, чтобы стыки плит располагались в зонах с наименьшей величиной (приближаемая к нулю) изгибающих моментов от вертикальных нагрузок.

Последовательность монтажа перекрытия на смонтируемые колонны ведется в следующем порядке: - устанавливаются и привариваются к арматуре колонн надколонные плиты, затем межколонные и, наконец, плиты-вставки. Межколонные и плиты-вставки имеют шпонки, позволяющие легко осуществить их соединения на сварке. После замоноличивания стыков создается пространственная жесткая конструкция.

Преимущество системы в отсутствии выступающих элементов в потолочной плоскости и в простоте монтажа, с помощью легких мобильных кранов.

Безригельная рамная или рамно-связевая каркасная система гражданских зданий высотой до 16 этажей рассчитана на вертикальные нагрузки на перекрытие в 1250 кг/м 2 . При больших нагрузках (2000 кг/м 2) ограничивают этажность здания -9-тью этажами.

Система обладает архитектурно-планировочными и конструктивными достоинствами. Гладкий потолок дает возможность гибко решать планировку внутреннего пространства создавать трансформируемые помещения. Консольные вылеты перекрытий обеспечивают вариантность пластических решений фасадов.

Безригельный каркас универсален - он с успехом применим, как в жилых зданиях, так и общественных (детских садах, школах, торговых предприятиях, спортивных и зрелищных) сооружениях и пр.

Система со скрытыми ригелями в плоскости перекрытия (КПНС) проектируется по связевой схеме из сборных элементов; колонн, плит, перекрытий и стен диафрагм жесткости. Связь между сборными элементами перекрытия осуществляется в результате устройства в построечных условиях монолитного ригеля с канатной напряженной арматурой, пропущенной через сквозные отверстия в колонне в ортогональных направлениях. Предварительное напряжение арматуры осуществляется на уровне этажных перекрытий, создавая двухосное обжатие плит перекрытия (рис. 16.7).

Плиты перекрытия имеют высоту в 30 см и состоят из верхней плиты, толщиной в 6 см, и нижней - 3 см и перекрещенных бортовых ребер. При монтаже плиты перекрытий укладывают на временные капители колонн и опоры, которые устанавливают уже на смонтированный нижний уровень. Плиты перекрытия могут быть выполнены на ячейку с опиранием на колонны по 4 углам или разбиты на две плиты, соединенные монолитным армированным швом. Конструкция, собранная из сборных элементов колонн и плит перекрытий - работает как единая статическая система, воспринимающая все силовые воздействия, за счет сил сцепления, возникающих между отдельными сборными элементами, и напряжений стальных канатов.

ИРКУТСКИМ государственный университет путей сообщения

8. Корн Г. К., Корн Т. К. Справочник по математике для научных работников и инженеров. М. : Наука, 1973. 831 с.

9. Ван дер Варден. Алгебра. М. : Наука, 1979. 623 с.

10. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 1. М. ; СПб.: Физматлит, 2001. 679 с.

11. Березин И. С., Жидков Н. П. Методы вычислений. Т. 2. М. : ГИФМЛ, 1960. 620 с.

12. Крейн М. Г., Неймарк М. А. Метод симметрических и эрмитовых форм в теории отделения корней алгебраических уравнений. Харьков: ГТТИ, 1936. 39 с.

УДК 699.841 Щербин Сергей Анатольевич,

к. т. н., доцент, декан факультета технической кибернетики, Ангарская государственная техническая академия, e-mail: [email protected]

Чигринская Лариса Сергеевна, старший преподаватель кафедры промышленного и гражданского строительства, Ангарская государственная техническая академия, e-mail: [email protected]

МОДЕЛИРОВАНИЕ УСИЛЕНИЯ НАДКОЛОННОГО СТЫКА

БЕЗРИГЕЛЬНОГО КАРКАСА

S.A. Shcherbin, L.S. Chygrynskaya

BEAMLESS FRAMEWORKS ABOVE COLUMN JOINT STRENGTHENING MODELING

Аннотация. В статье рассмотрены различные варианты усиления надколонного стыка безбалочного перекрытия. Выполнено моделирование усиленных стыков в среде SCAD, проведен анализ и сравнение данных численного расчета с целью выбора наиболее рационального варианта усиления.

Ключевые слова: моделирование, усиление, надколонный стык; безригельный каркас, безбалочное перекрытие.

Abstract. Various options of strengthening above-column the joint of beamless flat slabs are considered. Analysis and comparison of the numerical calculation data in the SCAD program are executed.

Keywords: modeling in SCAD, strengthening, beamless flat slab, stress and deformation distribution.

За первое десятилетие XXI века в России претерпели существенное изменение многие нормы и правила в области строительства.

В результате большое количество как эксплуатируемых, так и недостроенных зданий, запроектированных по прежним нормам, не удовлетворяют современным требованиям.

Сложившаяся ситуация требует оценки несущей способности и пригодности к нормальной эксплуатации конструкций существующих зданий, а также поиска новых вариантов усиления применяющихся в строительстве конструктивных си-

стем (КС).

В России широкое распространение получили системы с безригельным каркасом, характеризующиеся быстротой возведения, архитектурной выразительностью и свободной внутренней планировкой помещений с одновременным обеспечением прочности, надежности и устойчивости здания .

По проблемам использования КС с безри-гельным каркасом в строительной практике имеется большое количество научных публикаций, однако очень ограниченна информация об экспериментальных исследованиях работы таких систем под нагрузкой, отсутствуют четкие рекомендации по обеспечению пространственной жесткости здания . Кроме того, известным КС присущи значительные недостатки - сложная технология и, соответственно, трудоемкость выполнения стыков между плитами и надколонного стыка, что зачастую приводит к уменьшению надежности системы.

Поэтому актуальным представляется экспериментальное исследование напряженно-деформированного состояния безбалочного перекрытия с целью поиска эффективных вариантов повышения надежности и сейсмостойкости зданий.

В результате натурных испытаний конструктивной ячейки безбалочного перекрытия, встроенной в систему каркаса КУБ-1, было выявлено неравномерное распределение прогибов

Современные технологии. Математика. Механика и машиностроение

и нарушение регулярности полей напряжении перекрытия в зонах сопряжения надколонных панелей со стойками каркаса и, соответственно, недостаточная и разная жесткость надколонных стыков .

Обозначенные проблемы косвенно свидетельствуют о нарушении технологии производства работ по устройству стыков в условиях стройплощадки, поскольку в каркасе системы КУБ-1 все сопряжения конструктивных элементов должны обладать одинаковой жесткостью.

Соответственно, на следующем этапе работы возникла необходимость разработки новых технических решений по усилению надколонного стыка безригельных каркасов.

Согласно проектной документации на строительство зданий и сооружений по серии КУБ, безкапительный стык плит перекрытия с колоннами (рис. 1) выполняется сваркой специальных металлических элементов с последующим замоноли-чиванием монтажных узлов. Отверстие в надко-лонной плите обрамляется прокатным уголком.

Были разработаны несколько вариантов модифицированного надколонного стыка (рис. 2). В 1-м варианте (рис. 2, а) предполагается устройство металлической обоймы из прокатного уголка поверху и понизу надколонного стыка (возможно обойму устраивать только поверху - вариант 1*). Уголки крепятся к закладным деталям плиты сваркой, а к колонне анкерными болтами или шпильками. Во 2-м варианте (рис. 2, б) усиление существующего узла осуществляется добавлением стержней горизонтальной арматуры, уложенных во взаимно перпендикулярных направлениях поверху плиты и проходящих сквозь колонну. В 3-м варианте (рис. 2, в) подразумевается устройство верхней обоймы, состоящей из прокатных уголков, имеющих анкеровку от колонны на плиту.

Для сравнения эффективности представленных вариантов усиления с точки зрения разгрузки узла путем снижения воспринимаемых усилий было выполнено компьютерное моделирование и расчет по прочности и по деформациям надколон-ных стыков с помощью вычислительного комплекса SCAD на постоянную и временную равномерно распределенную нагрузку. Изополя напряжений, возникающих в надколонной части плиты, с учетом усиления по 1 -му варианту и без него изображены на рис. 3, 4. Полученные значения прогибов плиты в надколонной и консольной частях, нормальных и касательных напряжений, возникающих в надколонном стыке поверху и понизу безбалочного перекрытия, приведены в табл. 1.

Монт а жн о я "пр их дать, а"

Монтажная сборка 5 случае/ растягибающих усилий

Рис. 1. Стык надколонной плиты перекрытия с колонной: 1 - закладная деталь, соединяющая стержень колонны с закладной деталью надколонной плиты; 2 - бетонная монолитная заделка

Рис. 2. Варианты усиления надколонного стыка

Рис. 3. Изополя напряжений N (т/м) в надколонной части плиты серийного узла (без усиления)

Рис. 4. Изополя напряжений N (т/м) в надколонной части плиты узла, усиленного по варианту 1

Т а б л и ц а 1

Сравнение способов усиления надколонного стыка

Параметр Узел

без усиления 1 1* 2 3

2нч, мм -0,28 -0,17 -0,21 -0,23 -0,19

Zк, мм -0,74 -0,51 -0,59 -0,64 -0,61

дт нч, верх г/м2 " 137-161 135-159 137-160 116-136 133-156

ДТ нч, низ т/м2 -144-168 -147-170 -137-160 -134-155 -137-160

нч, верх т/м2 225264 147173 169200 187220 218254

нч, низ 1\у. т/м2 -237-276 -158-184 -197-228 -212-245 -210-245

дт нч, верх т/м2 " 67 44 62 57 48

дт нч, низ т/м2 -67 -49 -44 -56 -44

Тхунч, т/м2 ±(85-100) ±(14-17) ±(28-37) ±(70-82) ±(74-87)

/р. аРм т -1,05 -0,79 -0,86 -0,91 -0,86

О р.арм т +0,43 +0,26 +0,34 -0,35 -0,27

ОД, т 0 0 -0,07 -0,02 -0,03

Примечания:

гТИЧ гуКЧ

Z , Z - вертикальное смещение плиты в надколонной и консольной частях;

Усилия взяты при загружении «собственный вес + временная нагрузка»;

Для стали С245 Я = 240 МПа = 24465 т/м2;

Ыхт - напряжения в материале в надколонной части плиты (верх плиты - растяжение; низ плиты - сжатие);

- ^ арм - продольное усилие в рабочей арматуре колонны;

Ор-арм - перерезывающее усилие, действующее на рабочую арматуру колонны;

Усилие во введенной закладной детали в теле плиты перекрытия;

В узлах 1 и 1* уголок усиления смоделирован пластиной, т. е. только одной полкой уголка.

Анализируя данные табл. 1, можно отметить следующее:

Усилия (№■ арм и имеют наименьшие абсолютные значения для варианта 1 усиления. Соответственно, его применение позволит повысить степень статической неопределимости кон-

струкции и приведет к перераспределению усилий при загружении безбалочной плиты, образованию пластических шарниров и снижению вертикальной нагрузки на колонну;

Наибольшее снижение деформаций ^нч, Zкч) и, следовательно, уменьшение напряжений в материале плиты (М„ N, N Txy) также наблюдается для варианта 1.

Данные для сравнения способов усиления по силовым факторам, возникающим в элементах усиления (табл. 2), могут быть использованы для обоснованного подбора размеров усиливающих элементов, снижения материалоемкости и затрат на усиление надколонного стыка.

Т а б л и ц а 2 Сравнения вариантов по силовым факторам

в элементах усиления

Параметр Узел, элемент усиления

1, обойма из уголка поверху и понизу плиты 1*, обойма из уголка поверху плиты 2, арматурные стержни 3, обойма из уголка с анкеров-кой

Z, мм -0,15 -0,17 - -

N, т - - 1,14 1,22

N/, т/м2 1003-1765 1369-2160 - -

N/, т/м2 1007-1772 1373-2167 - -

Qz, т - - -0,17 +0,39

My, т-м - - ±0,01 ±0,02

Соответственно, по результатам сравнения вариантов из соображений эффективности снижения силовых факторов в надколонной части и трудоемкости выполнения элементов усиления наиболее предпочтителен вариант 1. Применение такого способа усиления приведет к увеличению жесткости горизонтального диска перекрытия и повышению сейсмостойкости конструктивной системы безригельного каркаса.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Чигринская Л. С., Бержинская Л. П. Анализ использования безригельного каркаса в сейсмических районах // Строительный комплекс России: наука, образование, практика: материалы междунар. науч.-практ. конф. Улан-Удэ: Изд-во ВСГТУ, 2008. С. 60-63.

2. Руководство по проектированию железобетонных конструкций с безбалочными перекрытиями. М. : Стройиздат, 1979. 65 с.

3. Руководство по расчету статически неопределимых железобетонных конструкций. М. : Стройиздат, 1975. 189 с.

4. Чигринская Л. С., Киселев Д. В., Щербин С. А. Изучение работы конструктивной ячейки безбалочного перекрытия системы КУБ-1 // Вестник ТГАСУ. 2012. № 4 (37). С. 128-143.

УДК 622.235:622.274.36.063.23 Тюпин Владимир Николаевич,

д. т. н., профессор каф. БЖД и ЗС, ЗабИЖТИрГУПС, тел. 89144408282, e-mail:[email protected]

Святецкий Виктор Станиславович,

генеральный директор ОАО «Приаргунское производственное горно-химическое объединение»,

тел. 83024525110

МЕТОДИКА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ БВР ПРИ ОТРАБОТКЕ МАЛОМОЩНЫХ УРАНОВЫХ РУДНЫХ ТЕЛ С ЦЕЛЬЮ СНИЖЕНИЯ РАЗУБОЖИВАНИЯ

V.N. Tyupin, V.S. Sviatetsky

METHODS OF BORING-BLASTING RATINGS DETERMINATION IN THE LOW-POWERED URANIUM ORE-BODIES MINING FOR THE PURPOSE OF INCREASING THE USEFUL COMPONENT IN THE BULK

Аннотация. Приведены механизм и зоны действия взрыва скважинных зарядов ВВ в трещиноватом горном массиве, зависимости для определения параметров ВВР при камерных вариантах систем отработки маломощных урановых рудных тел. Применение камерных вариантов отработки позволит увеличить производительность

добычи и снизить разубоживание руд по сравнению с нисходящей слоевой выемкой с твердеющей закладкой.

Ключевые слова: маломощные рудные тела, камерные системы разработки, механизм зоны действия взрыва, параметры БВР, разубожива-ние.